Posts Tagged ‘metric’


For a limited time we are publishing the Route Redistribution videos from our CCIE Routing & Switching Advanced Technologies Class for public viewing.  These videos cover all aspects of Route Redistribution needed for the CCIE R&S Lab Exam outside of the scope of MPLS, and will also be useful for any engineers looking for more information on how the Route Redistribution process works.

Specifically these videos cover basic and advanced route redistribution configuration, verification, and troubleshooting, including how and why route redistribution loops occur, how to identify and fix loops related to both Administrative Distance and Metric, TCL scripting for reachability testing, route tagging, the IP Route Profile feature, how to use and interpret the debug ip routing output, and other related topics.  Links the videos are as follows:

For technical questions about the topics covered in these videos please visit INE’s Online Community.

All of these videos and others totalling over 80 hours for the CCIE R&S ATC series are included in all of our All Access Pass subscriptions at just $159 per month, along with access to over 900 hours of other training videos that include, but are not limited to:

  • CCNA Routing & Switching
  • CCNA Security
  • CCNA Voice
  • CCNA Wireless
  • CCNP Routing & Switching
  • CCNP Security
  • CCNP Voice
  • CCIE Routing & Switching
  • CCIE Security
  • CCIE Voice
  • CCIE Service Provider

Tags: , , , , , , , ,


To start my reading from Petr’s excellent CCDE reading list for his upcoming LIVE and ONLINE CCDE Bootcamps, I decided to start with:
EIGRP for IP: Basic Operation and Configuration by Russ White and Alvaro Retana
I was able to grab an Amazon Kindle version for about $9, and EIGRP has always been one of my favorite protocols.
The text dives right in to none other than the composite metric of EIGRP and it brought a smile to my face as I thought about all of the misconceptions I had regarding this topic from early on in my Cisco studies. Let us review some key points regarding this metric and hopefully put some of your own misconceptions to rest.

  • While we are taught since CCNA days that the EIGRP metric consists of 5 possible components – BW, Delay, Load, Reliability, and MTU; we realize when we look at the actual formula for the metric computation, MTU is actually not part of the metric. Why have we been taught this then? Cisco indicates that MTU is used as a tie-breaker in a situation that might require it. To review the actual formula that is used to compute the metric, click here.
  • Notice from the formula that the K (constant values) impact which components of the metric are actually considered. By default K1 is set to 1 and K3 is set to 1 to ensure that Bandwidth and Delay are utilized in the calculation. If you wanted to make Bandwidth twice as significant in the calculation, you could set K1 to 2, as an example. The metric weights command is used for this manipulation. Note that it starts with a TOS parameter that should always be set to 0. Cisco never did fully implement this functionality.
  • The Bandwidth that effects the metric is taken from the bandwidth command used in interface configuration mode. Obviously, if you do not provide this value – the Cisco router will select a default based on the interface type.
  • The Delay value that effects the metric is taken from the delay command used in interface configuration mode. This value depends on the interface hardware type, e.g. it is lower for Ethernet but higher for Serial interfaces. Note how the Delay parameter allows you to influence EIGRP pathing decisions without the manipulation of the Bandwidth value. This is nice since other mechanisms could be relying heavily on the bandwidth setting, e.g. EIGRP bandwidth pacing or absolute QoS reservation values for CBWFQ.
  • The actual metric value for a prefix is derived from the SUM of the delay values in the path, and the LOWEST bandwidth value along the path. This is yet another reason to use more predictive Delay manipulations to change EIGRP path preference.

In the next post on the EIGRP metric, we will examine this at the actual command line, and discuss EIGRP load balancing options. Thanks for reading!

Tags: , , , ,


CCNA students can typically rattle off the fact that EIGRP uses Bandwidth and Delay in its composite metric calculation by default. In fact, they tend to know this as well as their own last name. But I often notice they might have some pretty big misconceptions about how this metric is really calculated, and how they can manipulate it.

Here are some very important “Core Knowledge” facts that we need to keep in mind about the EIGRP metric: Continue Reading

Tags: , ,


UPDATE: For more information on Redistribution see the video series Understanding Route Redistribution – Excerpts from CCIE R&S ATC

Simple Redistribution Step-by-Step

We’re going to take our basic topology from the previous post Understanding Redistribution Part I , and configure to provide full connectivity between all devices with the most simple configuration. Then we are going to tweak some settings and see how they affect redistribution and optimal routing. This is going to be an introductory example to illustrate the redistribution control techniques mentioned previously.

Continue Reading

Tags: , , , , , ,


CCIE Bloggers