Posts Tagged ‘mpls-te’

Oct
28

INE’s long awaited CCIE Service Provider Advanced Technologies Class is now available! But first, congratulations to Tedhi Achdiana who just passed the CCIE Service Provider Lab Exam! Here’s what Tedhi had to say about his preparation:

Finally i passed my CCIE Service Provider Lab exam in Hongkong on Oct, 17 2011. I used your CCIE Service Provider Printed Materials Bundle. This product makes me deep understand how the Service Provider technology works, so it doesn`t matter when Cisco has changed the SP Blueprint. You just need to practise with IOS XR and finding similiar command in IOS platform.

Thanks to INE and keep good working !

Tedhi Achdiana
CCIE#30949 – Service Provider

The CCIE Service Provider Advanced Technologies Class covers the newest CCIE SP Version 3.0 Blueprint, including the addition of IOS XR hardware. Class topics include Catalyst ME3400 switching, IS-IS, OSPF, BGP, MPLS Layer 3 VPNs (L3VPN), Inter-AS MPLS L3VPNs, IPv6 over MPLS with 6PE and 6VPE, AToM and VPLS based MPLS Layer 2 VPNs (L2VPN), MPLS Traffic Engineering, Service Provider Multicast, and Service Provider QoS. Understanding the topics covered in this class will ensure that students are ready to tackle the next step in their CCIE preparation, applying the technologies themselves with INE’s CCIE Service Provider Lab Workbook, and then finally taking and passing the CCIE Service Provider Lab Exam!

Streaming access is available for All Access Pass subscribers for as low as $65/month! Download access can be purchased here for $299. AAP members can additionally upgrade to the download version for $149.

Sample videos from class can be found after the break: Continue Reading

Tags: , , , , , , , , , , , ,

Oct
18

One of our most anticipated products of the year – INE’s CCIE Service Provider v3.0 Advanced Technologies Class – is now complete!  The videos from class are in the final stages of post production and will be available for streaming and download access later this week.  Download access can be purchased here for $299.  Streaming access is available for All Access Pass subscribers for as low as $65/month!  AAP members can additionally upgrade to the download version for $149.

At roughly 40 hours, the CCIE SPv3 ATC covers the newly released CCIE Service Provider version 3 blueprint, which includes the addition of IOS XR hardware. This class includes both technology lectures and hands on configuration, verification, and troubleshooting on both regular IOS and IOS XR. Class topics include Catalyst ME3400 switching, IS-IS, OSPF, BGP, MPLS Layer 3 VPNs (L3VPN), Inter-AS MPLS L3VPNs, IPv6 over MPLS with 6PE and 6VPE, AToM and VPLS based MPLS Layer 2 VPNs (L2VPN), MPLS Traffic Engineering, Service Provider Multicast, and Service Provider QoS.

Below you can see a sample video from the class, which covers IS-IS Route Leaking, and its implementation on IOS XR with the Routing Policy Language (RPL)

Tags: , , , , , , , , , , , , , , , , , ,

Aug
16

Abstract

In this blog post we are going to review a number of MPLS scaling techniques. Theoretically, the main factors that limit MPLS network growth are:

  1. IGP Scaling. Route Summarization, which is the core procedure for scaling of all commonly used IGPs does not work well with MPLS LSPs. We’ll discuss the reasons for this and see what solutions are available to deploy MPLS in presence of IGP route summarization.
  2. Forwarding State growth. Deploying MPLE TE may be challenging in large network as number of tunnels grow like O(N^2) where N is the number of TE endpoints (typically the number of PE routers). While most of the networks are not even near the breaking point, we are still going to review techniques that allow MPLS-TE to scale to very large networks (10th of thousands routers).
  3. Management Overhead. MPLS requires additional control plane components and therefore is more difficult to manage compared to classic IP networks. This becomes more complicated with the network growth.

The blog post summarizes some recently developed approaches that address the first two of the above mentioned issues. Before we begin, I would like to thank Daniel Ginsburg for introducing me to this topic back in 2007.

Continue Reading

Tags: , , , , , ,

May
01

The problem of unequal-cost load-balancing

Have you ever wondered why among all IGPs only EIGRP supports unequal-cost load balancing (UCLB)? Is there any special reason why only EIGRP supports this feature? Apparently, there is. Let’s start with the basic idea of equal-cost load-balancing (ECLB). This one is simple: if there are multiple paths to the same destination with equal costs, it is reasonable to use them all and share traffic equally among the paths. Alternate paths are guaranteed to be loop-free, as they are “symmetric” with respect to cost to the primary path. If we there are multiple paths of unequal cost, the same idea could not be applied easily. For example, consider the figure below:

uclb1

Suppose there is a destination behind R2 that R1 routes to. There are two paths to reach R2 from R1: one is directly to R2, and another via R3. The cost of the primary path is 10 and the cost of the secondary path is 120. Intuitively, it would make sense to start sending traffic across both paths, in proportion 12:1 to make the most use of the network. However, if R3 implements the same idea of unequal cost load balancing, we’ve got a problem. The primary path to reach R2 heading from R3 is via R1. Thus, some of the packets that R1 sends to R2 via R3 will be routed back to R1. This is the core problem of UCLB: some secondary paths may result in routing loops, as a node on the path may prefer to route back to the origin.
Continue Reading

Tags: , , , ,

Categories

CCIE Bloggers