Posts Tagged ‘QoS’

Nov
14

While delivering what turned out to be a very successful UCS and Nexus 1000V class a week and a half back, a number of you on the east coast of the US got tragically knocked out of class due to Hurricane/TS Sandy. While the class had to go on, I received a number of emails later on the following week mentioning about the disappointment many of you had based on not being able to ask questions during the live class. So we’ve decided to run the class again, live, the week after next. So for any who were not able to attend the first time due to this or any other reason, or would just like to attend again (or simply have an opportunity to purchase it for the first time and still attend a live version of this class), we will offer it again beginning on Nov 26 and running through Nov 30.

For anyone who may not know INE’s teaching style very well – let me just tell you that you will not be bored to death-by-powerpoint. We’ll present a very few slides with key points to remember, but 90% of the content you will see will be live, hands-on configuration and troubleshooting. We test everything the box(es) have to offer. We’ll do static pinning, dynamic pinning, and port channels for both LAN and SAN, and verify and fail(over) everything to show exactly what’s going on. We don’t just do GUI (that’d be too boring). We verify everything in the NX-OS CLI, and the upstream Nexus 5548UPs and MDS 9222Is. We’ll boot from local disk, boot from SAN, and build ESXi 5 live on the blades and pizza-box C200 as well, while talking through a number of the recommendations from both Cisco and VMware on the box. Things like number of vNICs, vHBAs, when to enable failover or not to enable failover and on which vNICS – and when should you do these things on ESXi with standard vSwitches vs when you should do them on ESXi running on top of the N1Kv VEM module.

Also, watch this blog as we will soon announce dates for a few new classes I will be holding relating to some very real-world production network training. Things such as UC on UCS (actually building it – not just talking about it), as well as BYOD with Cisco ISE across Wireless, Nexus and Catalyst platforms, as well as an across-the-board QoS class that shows both relevant and similar comparison configurations spanning Catalyst 3550, 3560/3750, 6500 with many various model blades, and Nexus 5500, 7000 and even 1000 platforms. The QoS class is something I’ve been asked by students to do for a while now, and am quite excited to bring all the hardware together in a single class.

See you in about a week.

Tags: , , , , , , , ,

Oct
18

One of our most anticipated products of the year – INE’s CCIE Service Provider v3.0 Advanced Technologies Class – is now complete!  The videos from class are in the final stages of post production and will be available for streaming and download access later this week.  Download access can be purchased here for $299.  Streaming access is available for All Access Pass subscribers for as low as $65/month!  AAP members can additionally upgrade to the download version for $149.

At roughly 40 hours, the CCIE SPv3 ATC covers the newly released CCIE Service Provider version 3 blueprint, which includes the addition of IOS XR hardware. This class includes both technology lectures and hands on configuration, verification, and troubleshooting on both regular IOS and IOS XR. Class topics include Catalyst ME3400 switching, IS-IS, OSPF, BGP, MPLS Layer 3 VPNs (L3VPN), Inter-AS MPLS L3VPNs, IPv6 over MPLS with 6PE and 6VPE, AToM and VPLS based MPLS Layer 2 VPNs (L2VPN), MPLS Traffic Engineering, Service Provider Multicast, and Service Provider QoS.

Below you can see a sample video from the class, which covers IS-IS Route Leaking, and its implementation on IOS XR with the Routing Policy Language (RPL)

Tags: , , , , , , , , , , , , , , , , , ,

Nov
08

Abstract

This publication discusses the spectrum of problems associated with transporting Constant Bit Rate (CBR) circuits over packet networks, specifically focusing VoIP services. It provides guidance on practical calculation for voice bandwidth allocation in IP networks, including the maximum bandwidth proportion allocation and LLQ queue settings. Lastly, the publication discusses the benefits and drawbacks of transporting CBR flows over packet switched networks and demonstrates some effectiveness criteria.

Introduction

Historically, the main design goal of Packet Switched Networks (PSNs) was optimum bandwidth utilization for low-speed links. Compared to their counterpart, circuit-switched networks (CSNs such as SONET/SDH networks), PSNs use statistical as opposed to deterministic (synchronous) multiplexing. This feature allows PSNs to be very effective for bursty traffic sources, i.e. those that send traffic sporadically. Indeed, with many sources this allows the transmission channel to be optimally utilized by sending traffic only when necessary. Statistical multiplexing is only possible if every node in the network implements packet queueing, because PSNs introduce link contention. One good historical example is ARPANET: the network theoretical foundation has been developed in Kleinrock’s work on distributed queueing systems (see [1]).
Continue Reading

Tags: , , , , , , , , ,

Oct
05

INE is happy to announce that we now have all 21 Modules of our new CCIE Voice Deep Dive completed –115 hours of recorded class-on-demand style video (no breaks or dead-air in the recordings – that’s 115 hours of actual learning!)– completed and ready for your consumption!

As we mentioned in a previous post, The author and poet Maya Angelou said “Words mean more than what is set down on paper. It takes the human voice to infuse them with deeper meaning.”. Well that is certainly what we have attempted to do with the CCIE Voice Deep Dive self-paced Class on Demand series – that is to bring the human instructional voice element to infuse deeper meaning to what is already fantastic Cisco Documentation. Anyone that has set out and determined to undertake the task of studying for and ultimately passing any CCIE Lab exam, knows that at some point during your studies, the words on paper (Cisco Docs, RFCs, books) – while a absolute phenomenal source of information – can at times seem to loose their impact. Perhaps you have been studying too long, read one too many docs, have the time pressure of your family and friends waiting for you to return to be a part of their life, or perhaps you are just starting out on your adventure and don’t know where to begin. Whatever stage you are at or whatever the case may be, it is certainly helpful to have a tutor and mentor there beside you at times, assisting you in understanding what each complex technology’s documentation is trying to teach you, in possibly a deeper and more insightful way than you can manage on your own.

For each complex topic we have held (or will soon hold) an online class where we dive down deep and explore all the concepts, practical application, and troubleshooting associated with each technology topic. The general format for each Class-on-Demand Deep Dive module spends between 4-7 hours on the given topic for that day, and during that time follows this outlined training methodology:

  • Collectively discuss and teach all concepts involved in the technology
  • Whiteboard concepts to further deepen every participant’s understanding
  • Define a specific set of tasks to be accomplished
  • Demonstrate how the tasks and concepts are implemented and properly configured
  • Test the configuration thoroughly
  • Vary the configuration to understand how different permutations effect the outcome
  • Debug and trace the working configuration to understand what should be seen
  • Break the configuration and troubleshoot with debugs and traces to contrast from the working set

Before we go on with the 21 module outline, here are a few demos of this Deep Dive series:

Demo 1: Module 10 :: Dial Plan :: Globalization Prezi – Theory and Reasons :: Runtime 1 hr

Demo 2: Module 10 :: Dial Plan :: Inbound Calling Party Localization :: Runtime 30 mins

Demo 3: Module 12 :: CUBE :: Conforming to ITSP Reqs: SIP Header Conversions :: Runtime 51 mins

Demo 4: Module 13 :: Unified Mobility :: Mobile Connect Access Lists and Exclusivity :: Runtime 20 mins

Continue Reading

Tags: , , , , , , , , , , , , , , , ,

Jul
01

Try these questions on for size! Learn all this and much more in the new QoS class – woohoo!

1. Based on the following configuration, what traffic will be policed?
class-map C_MUSIC
match protocol kazaa2
match protocol napster
!
class-map match-any C_WEB
match protocol http
match class-map C_MUSIC
!
policy-map P_WEB
class C_WEB
police 64000
!
interface serial 0/0
service-policy output P_WEB
A. All Kazaa version 2 traffic is policed
B. All Napster traffic is policed
C. All web traffic is policed
D. All Kazaa version 2, Napster, and web traffic is policed
E. No traffic is policed
2. You are configuring a Cisco Catalyst 3550 switch port to trust CoS markings if, and only if, the marking originated from a Cisco IP Phone. In an attempt to perform this configuration, you enter the mls qos trust device cisco-phone command. However, your configuration does not seem to be working properly. Why is the switch not trusting CoS markings coming from an attached Cisco IP Phone?
A. A Cisco Catalyst 3550 switch supports the mls qos trust device cisco-phone command, but the Cisco Catalyst 2950 does not support this command.
B. The mls qos trust cos command is missing.
C. The mls qos trust extend command is missing.
D. The mls qos cos 5 command is missing.
3. You administer a network that transports both voice and interactive video traffic. Since these traffic types are both latency-sensitive, you decide to implement the following configuration. Which statement is true regarding the configuration?
class-map C_VOICE
match protocol rtp audio
class-map C_VIDEO
match protocol rtp video
!
policy-map P_HIGH_PRIORITY
class C_VOICE
priority percent 15
class C_VIDEO
priority percent 35
class class-default
fair-queue
!
interface serial 0/0
service-policy output P_HIGH_PRIORITY
A. The configuration results in three queues, one for the C_VOICE class, one for the C_VIDEO class, and one queue for the class-default class.
B. The configuration results in two queues, one priority queue and one queue for the class-default class.
C. The class-default class uses FIFO as its queuing mechanism for traffic flows within its queue.
D. The two priority queues use WFQ for queuing traffic within those queues.
4. CB-WRED is configured using the random-detect command. Which two of the following statements are true concerning the random-detect command? (Choose 2)
A. The random-detect command cannot be issued for the class-default class.
B. The random-detect command cannot be issued for the priority class(es).
C. The random-detect command must be issued in conjunction with the bandwidth command (with the exception of the class-default class).
D. The random-detect command should be issued in conjunction with the priority command.
5. Consider the following configuration:
class-map TRANSACTIONAL
match protocol http
!
policy-map CBPOLICING
class TRANSACTIONAL
police 128000 conform-action set-dscp-transmit af11 exceed-action set-dscp-transmit af13 violate-action drop
!
interface serial 0/1
service-policy input CBPOLICING
What type of class-based policing configuration is represented by this configuration?
A. Single rate, single bucket
B. Single rate, dual bucket
C. Dual rate, single bucket
D. Dual rate, dual bucket
6. You configure CB-Shaping by issuing the command shape peak 8000 2000 2000. This configuration shapes to what peak rate?
A. 4000 bps
B. 8000 bps
C. 16000 bps
D. 32000 bps
7. You are configuring Multilink PPP (MLP) as your Link Fragmentation and Interleaving (LFI) mechanism for a WAN link. Identify the correct statements regarding the configuration of MLP. (Choose 2)
A. The configuration of Multilink PPP requires at least two physical links (e.g. two serial interfaces).
B. The IP address is removed from any serial interface that makes up the MLP bundle.
C. Any policy-map that was previously assigned to a physical interface should be reassigned to the multilink interface, that the physical interface is associated with, in order for the policy to take effect.
D. The virtual multilink interface does not use an IP address. Rather, it uses the IP unnumbered feature which allows the multilink interface to share an IP address with the multilink bundle member that has the highest IP address.

1. Based on the following configuration, what traffic will be policed?

class-map C_MUSIC
  match protocol kazaa2
  match protocol napster
!
class-map match-any C_WEB
  match protocol http
  match class-map C_MUSIC
!
policy-map P_WEB
  class C_WEB
    police 64000
!
interface serial 0/0
  service-policy output P_WEB

A. All Kazaa version 2 traffic is policed

B. All Napster traffic is policed

C. All web traffic is policed

D. All Kazaa version 2, Napster, and web traffic is policed

E. No traffic is policed

Answer:

C

Explanation:

The C_MUSIC class-map does not specify the match-any or match-all option. The default is match-all. Therefore, for traffic to be classified in the C_MUSIC class-map, a packet would simultaneously have to be a Kazaa version 2 packet and a Napster packet, which isn’t possible.

The C_WEB class-map uses the match-any option, meaning that traffic will be classified in this class-map if it is HTTP traffic or if it is traffic that was classified in the C_MUSIC class-map. Since, no traffic will be classified in the C_MUSIC class-map, as described above, the only traffic that will be classified by the C_WEB class-map is HTTP traffic.

The policy-map P_WEB is configured to police (i.e. rate limit) traffic classified by the C_WEB class-map to a bandwidth of 64 kbps. (NOTE: The default conform-action is transmit, and the default exceed-action is drop.) Since only HTTP (i.e. web) traffic is matched by the C_WEB class-map, web traffic is the only traffic that is policed. Continue Reading

Tags: , , , ,

Jun
29

Try these questions on for size! Learn all this and much more in the new QoS class – woohoo!

1. Based on the following configuration, what traffic will be policed?
class-map C_MUSIC
match protocol kazaa2
match protocol napster
!
class-map match-any C_WEB
match protocol http
match class-map C_MUSIC
!
policy-map P_WEB
class C_WEB
police 64000
!
interface serial 0/0
service-policy output P_WEB
A. All Kazaa version 2 traffic is policed
B. All Napster traffic is policed
C. All web traffic is policed
D. All Kazaa version 2, Napster, and web traffic is policed
E. No traffic is policed
2. You are configuring a Cisco Catalyst 3550 switch port to trust CoS markings if, and only if, the marking originated from a Cisco IP Phone. In an attempt to perform this configuration, you enter the mls qos trust device cisco-phone command. However, your configuration does not seem to be working properly. Why is the switch not trusting CoS markings coming from an attached Cisco IP Phone?
A. A Cisco Catalyst 3550 switch supports the mls qos trust device cisco-phone command, but the Cisco Catalyst 2950 does not support this command.
B. The mls qos trust cos command is missing.
C. The mls qos trust extend command is missing.
D. The mls qos cos 5 command is missing.
3. You administer a network that transports both voice and interactive video traffic. Since these traffic types are both latency-sensitive, you decide to implement the following configuration. Which statement is true regarding the configuration?
class-map C_VOICE
match protocol rtp audio
class-map C_VIDEO
match protocol rtp video
!
policy-map P_HIGH_PRIORITY
class C_VOICE
priority percent 15
class C_VIDEO
priority percent 35
class class-default
fair-queue
!
interface serial 0/0
service-policy output P_HIGH_PRIORITY
A. The configuration results in three queues, one for the C_VOICE class, one for the C_VIDEO class, and one queue for the class-default class.
B. The configuration results in two queues, one priority queue and one queue for the class-default class.
C. The class-default class uses FIFO as its queuing mechanism for traffic flows within its queue.
D. The two priority queues use WFQ for queuing traffic within those queues.
4. CB-WRED is configured using the random-detect command. Which two of the following statements are true concerning the random-detect command? (Choose 2)
A. The random-detect command cannot be issued for the class-default class.
B. The random-detect command cannot be issued for the priority class(es).
C. The random-detect command must be issued in conjunction with the bandwidth command (with the exception of the class-default class).
D. The random-detect command should be issued in conjunction with the priority command.
5. Consider the following configuration:
class-map TRANSACTIONAL
match protocol http
!
policy-map CBPOLICING
class TRANSACTIONAL
police 128000 conform-action set-dscp-transmit af11 exceed-action set-dscp-transmit af13 violate-action drop
!
interface serial 0/1
service-policy input CBPOLICING
What type of class-based policing configuration is represented by this configuration?
A. Single rate, single bucket
B. Single rate, dual bucket
C. Dual rate, single bucket
D. Dual rate, dual bucket
6. You configure CB-Shaping by issuing the command shape peak 8000 2000 2000. This configuration shapes to what peak rate?
A. 4000 bps
B. 8000 bps
C. 16000 bps
D. 32000 bps
7. You are configuring Multilink PPP (MLP) as your Link Fragmentation and Interleaving (LFI) mechanism for a WAN link. Identify the correct statements regarding the configuration of MLP. (Choose 2)
A. The configuration of Multilink PPP requires at least two physical links (e.g. two serial interfaces).
B. The IP address is removed from any serial interface that makes up the MLP bundle.
C. Any policy-map that was previously assigned to a physical interface should be reassigned to the multilink interface, that the physical interface is associated with, in order for the policy to take effect.
D. The virtual multilink interface does not use an IP address. Rather, it uses the IP unnumbered feature which allows the multilink interface to share an IP address with the multilink bundle member that has the highest IP address.

1. Based on the following configuration, what traffic will be policed?

class-map C_MUSIC
  match protocol kazaa2
  match protocol napster
!
class-map match-any C_WEB
  match protocol http
  match class-map C_MUSIC
!
policy-map P_WEB
  class C_WEB
    police 64000
!
interface serial 0/0
  service-policy output P_WEB

A. All Kazaa version 2 traffic is policed

B. All Napster traffic is policed

C. All web traffic is policed

D. All Kazaa version 2, Napster, and web traffic is policed

E. No traffic is policed

2. You are configuring a Cisco Catalyst 3560 switch port to trust CoS markings if, and only if, the marking originated from a Cisco IP Phone. In an attempt to perform this configuration, you enter the mls qos trust device cisco-phone command. However, your configuration does not seem to be working properly. Why is the switch not trusting CoS markings coming from an attached Cisco IP Phone?

A. A Cisco Catalyst 2950 switch supports the mls qos trust device cisco-phone command, but the Cisco Catalyst 3560 does not support this command

B. The mls qos trust cos command is missing

C. The mls qos trust extend command is missing

D. The mls qos cos 5 command is missing

E. The PC attached to the phone is overriding the CoS markings

Continue Reading

Tags: , , , ,

Jun
17

We know from the 5-Day QoS bootcamp that Differentiated Services is one of the three major overall approaches to providing Quality of Service in an enterprise. The other options are Integrated Services and Best Effort.

When we studied Differentiated Services, we saw that the primary marking technology approach was the Differentiated Services Code Point (DSCP) concept. These are the high order 6 bits in the IP packet ToS Byte. But how can MPLS use these markings in order to provide QoS treatment (Per Hop Behaviors (PHBs)) to various traffic forms?

The first major issue to solve is the fact that Label Switch Routers (LSRs) rely solely on the MPLS header when making forwarding decisions. These devices will no longer analyze the IP Header information, thus negating the use of the ToS Byte. This was solved through the creation of the Experimental Bits field  in the MPLS header. The IETF has now renamed the field to the Traffic Class field.  See RFC 5462.

Continue Reading

Tags: , , ,

Jun
14

In this short blog post, we are going to give condensed overview of the four main flavors of Frame-Relay Traffic Shaping (FRTS). Historically, as IOS evolved with time, different methods have been introduced, having various level of feature support. Two main features, specific to Frame-Relay Traffic-Shaping are per-VC shaping and queueing and adaptive shaping in response to Frame-Rleay congestion notifications (e.g. BECNs). You’ll see that not every flavor supports these two features. We begin with the «fossil» known as Generic Traffic Shaping.

Generic Traffic Shaping

This feature was initially designed to shape packet traffic sent over any media, be it Ethernet, Frame-Relay, PPP etc. The command syntax is traffic-shape {rate|group} and allows specifying traffic scope using an access-list (notice that different ACL types are supported). You may tune the Bc/Be values as well as the shaping queue depth (amount of buffers). If the shaper delays traffic, the queue service strategy would be fixed to WFQ with the queue size equal to the buffer space allocated. Additional WFQ parameters such as number of flows and congestive discard threshold could not be tuned and set based on the shaper rate automatically.

An unique feature of GTS is the ability to apply multiple shapers to a single interface. However, shapers are not cascaded, but rather a packet is assigned to the first matching shaper rule. In the example below, there are three rules, with the last one being “fallback”, matching all packets that didn’t match access-lists 100 and 101. Unlike using the legacy CAR feature (rate-limit command) you cannot «cascade» multiple traffic-shape statements on the same interface, i.e. there is no “continue” action.

traffic-shape group 100 128000
traffic-shape group 101 64000
traffic-shape group 199 256000
!
access-list 199 permit ip any any

Continue Reading

Tags: , ,

May
09

INE is thrilled to announce the Live Online 5-Day QoS bootcamp. The course begins June 7, 2010 at 11 AM EST US. This course includes:

  • The Live Online class
  • The Recorded Online class
  • An interactive, self-paced version
  • An audio bootcamp version
  • A full Implementing QoS practice exam with a Tell Me Why PDF

Click here to sign up right now!

This one-of-a-kind course is targeted at CCIE R&S, Voice, Wireless, and Security candidates, as well as students pursuing their CCIP professional-level certification. Here is the course At A Glance:

Module 1 Overview of QoS

Module 2 Components of QoS

Module 3 The MQC

Module 4 Classification and Marking

Module 5 Congestion Management

Module 6 Congestion Avoidance

Module 7 Policing and Shaping

Module 8 Link Efficiency

Module 9 AutoQoS

Module 10 QoS on Cisco Security Equipment

Module 11 QoS and Wireless

Tags: , , ,

Apr
20

Fans of the wildly popular CCIE Written Bootcamp need to check out Practice Exam 2 which has been updated with some more thought-provoking Quality of Service (QoS) questions that will help with the CCIE R&S Written as well as the Lab exam.

For some fun for all, try this question on for size:

Match the QoS marking with the correct definition:

QoS Marking

1. DSCP EF

2. DSCP 20

3. IP PREC 5

4. DE

5. CLP

6. EXP BITS

Definition

a. ATM

b.Diff Serv VoIP

c. Frame Relay

d. MPLS

e.Legacy VoIP Marking

f. Assured Forwarding 22 

The answer is posted in the comments. Enjoy.

Tags: , , ,

Categories

CCIE Bloggers